

|lal
د.يبعيا شـلمـان كمون

DC Biasing

المحاضرة الخامسةّ

References

Text Books :

1-ELECTRONIC DEVICES AND CIRCUIT THEORY
 Eleventh Edition By
 Robert L. Boylestad and Louis Nashelsky

2-ELECTRONIC DEVICES
Ninth Edition By
Thomas L. Floyd

DC Biasing

FIG. 4.18
DC equivalent of Fig. 4.17.

2-EMITTER-BIAS CONFIGURATION

The dc bias network of the above Fig. contains an emitter resistor to improve the stability level over that of the fixedbias configuration. The more stable a configuration, the less its response will change due to undesirable changes in temperature and parameter variations. The improved stability will be demonstrated through a numerical example later in the section. The analysis will be performed by first examining the base-emitter loop and then using the results to investigate the collector-emitter loop. The dc equivalent of the circuit appears in Fig. on right with a separation of the source to create an input and output section

DC Biasing

Base-Emitter Loop
Writing Kirchhoff's voltage law around the loop in the Base-Emitter Loop results in the following equation:

$$
+V_{C C}-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=0
$$

Recall that

$$
I_{E}=(\beta+1) I_{B}
$$

Substituting for $\boldsymbol{I}_{\boldsymbol{E}}$

$$
\begin{aligned}
& V_{C C}-I_{B} R_{B}-V_{B E}-(\beta+1) I_{B} R_{E}=0 \\
& I_{B}\left(R_{B}+(\beta+1) R_{E}\right)-V_{C C}+V_{B E}=0 \\
& I_{B}\left(R_{B}+(\beta+1) R_{E}\right)=V_{C C}-V_{B E}
\end{aligned}
$$

with
and solving for $I_{\boldsymbol{B}}$ gives

$$
I_{B}=V_{C C}-V_{B E} / R_{B}+(\beta+1) R_{E} *
$$

Note that the only difference between this equation for I_{B} and that obtained for the fixed bias configuration is the term $(\beta+1) \boldsymbol{R}_{\boldsymbol{E}}$

DC Biasing

Collector-Emitter Loop

Writing Kirchhoff's voltage law for the indicated loop in the clockwise direction results in

$$
I_{E} R_{E}+V_{C E}+I_{C} R_{C}-V_{C C}=0
$$

Substituting $I E \cong I C$ and grouping terms gives
and

$$
\begin{gathered}
V_{C E}-V_{C C}+I_{C}\left(R_{C}+R_{E}\right)=0 \\
\left.V_{C E}=V_{C C}-I_{C} R_{C}+R_{E}\right)
\end{gathered}
$$

The single-subscript voltage V_{E} is the voltage from emitter to ground and is determined By :

$$
V_{E}=I_{E} R_{E}
$$

whereas the voltage from collector to ground can be determined from
and

$$
\begin{aligned}
V_{C E} & =V_{C^{-}} V_{E} \\
V_{C} & =V_{C E}+V_{E} \\
V_{C} & =V_{C C}-I_{C} R_{C}
\end{aligned}
$$

or

Collector-emitter loop.

The voltage at the base with respect to ground can be determined from
Or

$$
\begin{aligned}
& V_{B}=V_{C C}-I_{B} R_{B} \\
& V_{B}=V_{B E}+V_{E}
\end{aligned}
$$

DC Biasing

Example 7

For the emitter-bias network in the following Fig. determine:
a). I_{B}.
b). I_{C}.
c). $V_{C E}$.
d). V_{C}.
e). V_{E}.
f). V_{B}.
g). $V_{B C}$.

Emitter-stabilized bias circuit.

DC Biasing

Solution:

a.	$\begin{aligned} I_{B} & =V_{C C}-V_{B E} / R_{B}+(\beta+1) R_{E} \\ & =20 \mathrm{~V}-0.7 \mathrm{~V} / 430 \mathrm{k} \Omega+(51)(1 \mathrm{k} \Omega) \\ & =19.3 \mathrm{~V} / 481 \mathrm{k} \Omega \\ & =40.1 \mathrm{~mA} \end{aligned}$
b.	$\begin{aligned} I_{C} & =\beta I_{B} \\ & =(50)(40.1 \mathrm{~mA}) \cong 2.01 \mathrm{~mA} \end{aligned}$
c.	$\begin{aligned} V_{C E} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \\ & =20 \mathrm{~V}-(2.01 \mathrm{~mA})(2 \mathrm{k} \Omega+1 \mathrm{k} \Omega) \\ & =20 \mathrm{~V}-6.03 \mathrm{~V} \\ & =13.97 \mathrm{~V} \end{aligned}$
d.	$\begin{aligned} V_{C} & =V_{C C}-I_{C} R_{C} \\ & =20 \mathrm{~V}-(2.01 \mathrm{~mA})(2 \mathrm{k} \Omega)=20 \mathrm{~V}-4.02 \mathrm{~V} \\ & =15.98 \mathrm{~V} \end{aligned}$
e.	$\begin{aligned} V_{E} & =V_{C}-V_{C E} \\ & =15.98 \mathrm{~V}-13.97 \mathrm{~V} \\ & =2.01 \mathrm{~V} \end{aligned}$
Or	$\begin{aligned} \boldsymbol{V}_{E} & =I_{E} R_{E}-I_{C} R_{E} \\ & =(2.01 \mathrm{~mA})\left(1 \mathrm{k}_{-}\right) \\ & =2.01 \mathrm{~V} \end{aligned}$

DC Biasing

f.

$$
\begin{aligned}
& V_{B}=V_{B E}+V_{E} \\
&=0.7 \mathrm{~V}+2.01 \mathrm{~V} \\
&=2.71 \mathrm{~V} \\
& V_{B C}=V_{B}-V_{C} \\
&=(+2.71 \mathrm{~V})-(+15.98 \mathrm{~V}) \quad\left(\mathrm{V}_{B}<\mathrm{V}_{\mathrm{C}}\right) \\
&=-13.27 \mathrm{~V}\left(\text { which means that } \mathrm{Vc} \text { is }+ \text { ve w.r.t } \mathrm{V}_{\mathrm{B}}\right. \text { and reversed biased as } \\
&\text { required })
\end{aligned}
$$

g.

DC Biasing

3-Voltage-Divider Bias Configuration

In the previous bias configurations the bias current $I_{C Q}$ and voltage $V_{C E Q}$ were a function of the current gain β of the transistor. However, because β is temperature sensitive, it would be desirable to develop a bias circuit that is independent of β. The voltage-divider bias configuration of Fig. 4.28 is such a network. If analyzed on an exact basis, the sensitivity to changes in beta is quite small. If the circuit parameters are properly chosen, the resulting levels of $I_{C Q}$ and $V_{C E Q}$ can be almost totally independent of beta. Recall from previous discussions
that a Q-point is defined by a fixed level of $I_{C Q}$ and $V_{C E Q}$ as shown in Fig. 4.29 .

The level of $I_{B Q}$ will change with the change in beta, but the operating point on the characteristics defined by $I_{C Q}$ and $V_{C E Q}$ can remain fixed if the proper circuit parameters are employed.

As noted earlier, there are two methods that can be applied to analyze the voltage-divider

DC Biasing

Voltage-divider bias configuration.

DC components of the voltagedivider configuration.

Fig. 28

Redrawing the input side of the network of Fig. 4.28.

DC Biasing

Determining R_{Th} -
FIG. 4.32

FIG. 4.33
Determining E_{Th}.

1- The voltage source is replaced by a short-circuit find $R_{\text {th }}$ 2-Redrawing the input side of the network
For the dc analysis the network can be redrawn as shown above. The input side of the network can then be redrawn for the dc analysis.
The Thevenin's equivalent network for the network to the left of the base terminal can then be found in the following manner:
R_{Th} The voltage source is replaced by a short-circuit equivalent as shown in the following Fig.

$$
R_{\mathrm{Th}}=R 1 \| R 2
$$

DC Biasing

E_{Th} The voltage source $V_{C C}$ is returned to the network and the open-circuit Thevenin's voltage of Fig. 4.33 determined as follows:

Applying the voltage-divider rule gives

$$
\begin{equation*}
E_{\mathrm{Th}}=V_{R 2}=R_{2} V_{C C} / R 1+R 2 \tag{4.29}
\end{equation*}
$$

The Thevenin's network is then redrawn as shown in Fig. 4.34, and $I_{B Q}$ can be determined by first applying Kirchhoff's voltage law in the clockwise direction for the loop indicated:

$$
E_{\mathrm{Th}}-I_{B} R_{\mathrm{Th}}-V_{B E}-I_{E} R_{E}=0
$$

Substituting $I_{E}=(\beta+1) I_{B}$ and solving for I_{B} yields

$$
\begin{align*}
& I_{B}=\left(E_{\mathrm{Th}}-V_{B E}\right) / R_{\mathrm{Th}}+(\beta+1) R_{E} \tag{4.30}\\
& V_{C E}=V_{C C}-\boldsymbol{I}_{C}\left(R_{C}+\boldsymbol{R}_{E}\right) \tag{4.31}
\end{align*}
$$

FIG. 4.34
Inserting the Thévenin equivalent circuit.

DC Biasing

EXAMPLE 7 : Determine the dc bias voltage $V_{C E}$ and the current I_{C} for the voltagedivider configuration of Fig. 4.35
Solution: $\boldsymbol{R}_{\mathrm{Th}}=\boldsymbol{R} 1| | \boldsymbol{R} 2$

$$
=(39 \mathrm{k} \Omega)(3.9 \mathrm{k} \Omega) / 39 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega=3.55 \mathrm{k} \Omega
$$

$$
E_{\mathrm{Th}}=R_{2} V_{C C} / R_{1}+R_{2}=(3.9 \mathrm{k} \Omega)(22 \mathrm{~V}) / 39 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega=2 \mathrm{~V}
$$

$$
I_{B}=E_{\mathrm{Th}}-V_{B E} / R_{\mathrm{Th}}+(\beta+1) R_{E}
$$

$$
=2 \mathrm{~V}-0.7 \mathrm{~V} / 3.55 \mathrm{k} \Omega+(101)(1.5 \mathrm{k} \Omega)
$$

$$
=1.3 \mathrm{~V} / 3.55 \mathrm{k} \Omega+151.5 \mathrm{k} \Omega
$$

$$
=8.38 \mu \mathrm{~A}
$$

$$
I_{C}=\beta I_{B}
$$

$$
=(100)(8.38 \mathrm{~mA})
$$

$$
=0.84 \mathrm{~mA}
$$

$$
V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)
$$

$$
=22 \mathrm{~V}-(0.84 \mathrm{~mA})(10 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega)
$$

FIG. 4.35
Beta-stabilized circuit for Example 4.8.

DC Biasing

4-Collector Feedback Configuration

An improved level of stability can also be obtained by introducing a feedback path from collector to base as shown in Fig. 4.38 . Although the Q-point is not totally independent of beta (even under approximate conditions), the sensitivity to changes in beta or temperature variations is normally less than encountered for the fixed-bias or emitter-biased configurations.
The analysis will again be performed by first analyzing the base-emitter loop, with the results then applied to the collector-emitter loop.

FIG. 4.38
DC bias circuit with voltage feedback.

DC Biasing

Base-Emitter Loop

Figure 4.39 shows the base-emitter loop for the voltage feedback configuration. Writing Kirchhoff's voltage law around the indicated loop in the clockwise direction will result in

$$
V_{C C}-I_{C} R_{C}-I_{B} R_{F}-V_{B E}-I_{E} R_{E}=0
$$

It is important to note that the current through R_{C} is not I_{C}, but I_{C} (where $I_{\check{C}}=I_{C}+I_{B}$). However, the level of I_{C} and $I_{\check{C}}$ far exceeds the usual level of I_{B}, and the approximation $I_{C} \cong I_{C}$ is normally employed. Substituting

$$
I_{C} \cong I_{C}=\beta I_{B} \text { and } I_{E} \cong I_{C} \text { results in }
$$

FIG. 4.39
Base-emitter loop for the network of Fig. 4.38.

$$
V_{C C}-\beta I_{B} R_{C}-I_{B} R_{F}-V_{B E}-\beta I_{B} R_{E}=0
$$

Gathering terms, we have

$$
V_{C C}-V_{B E}-\beta I_{B}\left(R_{C}+R_{E}\right)-I_{B} R_{F}=0
$$

and solving for I_{B} yields

$$
\begin{gather*}
I_{B}=V_{C C}-V_{B E} \\
R_{F}+\beta\left(R_{C}+R_{E}\right) \tag{4.41}
\end{gather*}
$$

DC Biasing

Collector-Emitter Loop

The collector-emitter loop for the network of Fig. 4.38 is provided in Fig. 4.40 . Applying Kirchhoff's voltage law around the indicated loop in the clockwise direction results in

$$
I_{E} R_{E}+V_{C E}+I_{C} R_{C}-V_{C C}=0
$$

Because $I_{C} \cong I_{C}$ and $I_{E} \cong I_{C}$ we have
$I_{C}\left(R_{C}+R_{E}\right)+V_{C E}-V_{C C}=0$
and $V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)$
which is exactly as obtained for the emitter-bias and voltage-divider bias configurations.

FIG. $\mathbf{4 . 4 0}$
network of Fig. 4.38.

DC Biasing

EXAMPLE 4.12 Determine the quiescent levels of $I_{C Q}$ and $V_{C E Q}$ for the network of Fig.4.41.
Solution:

FIG. 4.41
Network for Example 4.12.

DC Biasing

EXAMPLE 4.14 Determine the dc level of I_{B} and V_{C} for the network of Fig. 4.42

Solution: In this case, the base resistance for the dc analysis is composed of two resistors with a capacitor connected from their junction to ground. For the dc mode, the apacitor assumes the open-circuit equivalence, and $R_{B}=\boldsymbol{R}_{F} 1+R_{F} \mathbf{2}$. Solving for I B gives :

$$
\begin{aligned}
I_{B} & =V_{C C}-V_{B E} / R_{B}+\beta\left(R_{C}+R_{E}\right) \\
& =18 \mathrm{~V}-0.7 \mathrm{~V} /(91 \mathrm{k}+110 \mathrm{k})+(75)(3.3 \mathrm{k}+0.51 \mathrm{k}) \\
& =17.3 \mathrm{~V} / 201 \mathrm{k}+285.75 \mathrm{k} \\
& =17.3 \mathrm{~V} / 486.75 \mathrm{k} \\
& =35.5 \mu \mathrm{~A} \\
I_{C} & =\beta I_{B} \\
& =(75)(35.5 \mathrm{~mA}) \\
& =2.66 \mathrm{~mA} \\
V_{C} & =V_{C C}-I_{\check{C}} R_{C} \cong V_{C C}-I_{C} R_{C} \\
& =18 \mathrm{~V}-(\mathbf{2 . 6 6} \mathrm{mA})\left(3.3 \mathrm{k}_{-}\right) \\
& =18 \mathrm{~V}-\mathbf{8 . 7 8} \mathrm{V} \\
& =9.22 \mathrm{~V}
\end{aligned}
$$

FIG. 4.42
Network for Example 4.14.

DC Biasing

5- EMITTER-FOLLOWER CONFIGURATION

The previous sections introduced configurations in which the output voltage is typically taken off the collector terminal of the BJT. This section will examine a configuration where the output is taken off the emitter terminal as shown in Fig. 4.46. The configuration of Fig. 4.46 is not the only one where the output can be taken off the emitter terminal. In fact, any of the configurations just described can be used so long as there is a resistor in the emitter leg.

FIG. 4.46
Common-collecter (emitter-follower) configuration.

FIG. 4.47 dc equivalent of Fig. 4.46.

DC Biasing

The dc equivalent of the network of Fig. 4.46 appears in Fig. 4.47 Applying Kirchhoff's voltage rule to the input circuit will result in

$$
-I_{B} R_{B}-V_{B E}-I_{E} R_{E}+V_{E E}=0
$$

and using $\quad \mathrm{I}_{\mathrm{E}}=(\beta+1) \mathrm{I}_{\mathrm{B}}$

$$
\begin{equation*}
I_{B} R_{B}+(\beta+1) I_{B} R_{E}=V_{E E}-V_{B E} \tag{4.44}
\end{equation*}
$$

so that $I_{B}=V_{E E}-V_{B E} / R_{B}+(\beta+1) R_{E}$
For the output network, an application of Kirchhoff's voltage law will result in

$$
\begin{equation*}
-V_{C E}-I_{E} R_{E}+V_{E E}=0 \tag{4.45}
\end{equation*}
$$

And $\quad V_{C E}=V_{E E}-I_{E} R_{E}$

DC Biasing

EXAMPLE 4.16 Determine $V_{\text {CEQ }}$ and $I_{\text {EQ }}$ for the network of Fig. 4.48.
Solution:
Eq. 4.44: $I_{B}=V_{E E}-V_{B E} / R_{B}+(\beta+1) \boldsymbol{R}_{E}$

$$
\begin{aligned}
& =20 \mathrm{~V}-0.7 \mathrm{~V} / 240 \mathrm{k}+(90+1) 2 \mathrm{k} \\
& =19.3 \mathrm{~V} / 240 \mathrm{k}+182 \mathrm{k} \\
& =19.3 \mathrm{~V} / 422 \mathrm{k} \\
& =45.73 \mathrm{~mA}
\end{aligned}
$$

and Eq. 4.45 $V_{C E Q}=V_{E E}-I_{E} R_{E}$

$$
\begin{aligned}
& =V_{E E}-(\beta+1) I_{B} R_{E} \\
& =20 \mathrm{~V}-(90+1)(45.73 \mathrm{~mA})\left(2 \mathrm{k}_{-}^{\prime \prime}\right. \\
& =20 \mathrm{~V}-8.32 \mathrm{~V} \\
& =11.68 \mathrm{~V} \\
I_{E Q} & =(\beta+1) I_{B}=(91)(45.73 \mathrm{~mA}) \\
& =4.16 \mathrm{~mA}
\end{aligned}
$$

FIG. 4.48
Example 4.16.

